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ABSTRACT
Rust programming language is gaining popularity rapidly in build-
ing reliable and secure systems due to its security guarantees and
outstanding performance. To provide extra functionalities, the Rust
compiler introduces Rust unstable features (RUF) to extend compiler
functionality, syntax, and standard library support. However, these
features are unstable andmay get removed, introducing compilation
failures to dependent packages. Even worse, their impacts propa-
gate through transitive dependencies, causing large-scale failures
in the whole ecosystem. Although RUF is widely used in Rust, pre-
vious research has primarily concentrated on Rust code safety, with
the usage and impacts of RUF from the Rust compiler remaining
unexplored. Therefore, we aim to bridge this gap by systematically
analyzing the RUF usage and impacts in the Rust ecosystem. We
propose novel techniques for extracting RUF precisely, and to assess
its impact on the entire ecosystem quantitatively, we accurately
resolve package dependencies. We have analyzed the whole Rust
ecosystem with 590K package versions and 140M transitive de-
pendencies. Our study shows that the Rust ecosystem uses 1000
different RUF, and at most 44% of package versions are affected by
RUF, causing compiling failures for at most 12% of package versions.
To mitigate wide RUF impacts, we further design and implement a
RUF-compilation-failure recovery tool that can recover up to 90%
of the failure. We believe our techniques, findings, and tools can
help stabilize the Rust compiler, ultimately enhancing the security
and reliability of the Rust ecosystem.
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1 INTRODUCTION
In recent years, Rust [42] has been widely used to build reliable
software productively, with its unique design for security and per-
formance. Rust enforces memory safety and type safety via the
ownership mechanism without garbage collection [26, 35]. This
makes Rust a great option for developing secure and efficient appli-
cations and frameworks, such as browsers, virtualization, database,
and game software stack [2, 5, 10, 11, 19, 32, 48, 58]. Large projects,
including Android and Linux, also integrate Rust into their main
projects for security concerns. While the software ecosystem brings
convenience to software development, it can also introduce poten-
tial reliability and security concerns to the software [33, 34].

Although Rust is being increasingly adopted, the Rust ecosystem
is still young, and many problems within the ecosystem have not
been well studied. Previous studies on Rust security primarily focus
on security threats caused by developers breaking Rust compiler
security checks [8, 9, 24, 31, 45, 46, 59], but ignores the problems of
the compiler itself. We observe that the compiler allows developers
to use Rust unstable features (RUF) to extend the functionalities of
the compiler. However, RUF may introduce vulnerabilities to Rust
packages [13], and removed RUF will make packages using it suffer
from compilation failure. Even worse, the compilation failure can
propagate through package dependencies, causing potential threats
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Figure 1: Architecture overview of our work.

to the entire ecosystem. Although RUF are widely used by Rust
developers, unfortunately, to the best of our knowledge, its usage
and impacts on the whole Rust ecosystem have not been studied so
far.

To fill this gap, this paper conducts the first in-depth study to
analyze RUF usage and its impacts on the whole Rust ecosystem.
We begin by extracting RUF definitions from the compiler and their
usage from packages. Following that, we resolve all dependencies
across the entire ecosystem, allowing us to quantify RUF impacts on
an ecosystem scale. Though conceptually simple, we must resolve
three challenges to achieve the analysis.

First, it is hard to extract RUF. There is no official documentation
to specify RUF definitions and usage, and they frequently change
with compiler release updates. As a result, the syntax of RUF is
not unified, and no existing technique can extract RUF accurately.
To resolve this challenge, we develop new techniques to track all
RUF supported by each version of the Rust compiler and all RUF
used by Rust packages in the ecosystem. Second, the Rust package
manager cannot be used to analyze the entire ecosystem in an
acceptable time. Existing dependency-resolving techniques [17,
39, 66] fail to cover all dependency types and use approximate
resolution algorithms, leading to inaccurate dependency resolution.
Therefore, we propose an accurate Ecosystem Dependency Graph
(EDG) generator to resolve dependencies in the Rust ecosystem.
Third, it is challenging to quantify RUF impacts precisely. RUF
impacts other packages conditionally, determined by both RUF
configuration and dependency attributes. Therefore, we propose the
semantic identification of RUF configuration to precisely identify
RUF usage and convey its impacts.

By conquering the above challenges, we analyze all packages on
the official package database crates.io and resolve 592,183 package
versions to get 139,525,225 transitive dependencies and 182,026
RUF configurations. Our highlighted findings are: 1) About half
of RUF (47%) are not stabilized in the latest version of the Rust
compiler; 2) 72,132 (12%) package versions in the Rust ecosystem
are using RUF, and 90% of package versions among them are still
using unstabilized RUF; 3) Through dependency propagation, RUF
can impact at most 259,540 (44%) package versions, causing at most
70,913 (12%) versions to suffer from compilation failure. To further
mitigate RUF impacts, we propose a new technique to detect RUF

impacts on packages and recover them if RUF make them suffer
from compilation failure. Theoretically, 90% compilation failure
caused by RUF impacts can be recovered.With our novel techniques,
our work further advances the state of the art in analyzing RUF
usage and impacts. Our unique findings reveal the stability problems
of the Rust compiler, and based on these insights, we offer practical
mitigation tools and suggestions to foster a more reliable Rust
ecosystem.

The contributions of this paper can be summarized as follows:
• New Study.We are the first to investigate the usage and impacts
of RUF in the Rust ecosystem. Our study demystifies RUF from
three aspects: How RUF evolve with compiler upgrades, how
Rust packages use RUF, and how RUF impact packages through
dependencies.
• New Technique.We propose novel techniques to extract RUF
and determine RUF impacts in the Rust ecosystem. First, we pro-
pose the compilation data-flow interception to extract RUF usage
of Rust packages precisely. Second, we propose semantic identifi-
cation of RUF configuration to recognize the semantics among RUF
configurations. Third, we propose ecosystem dependency graph
generator to efficiently and accurately determine RUF impacts
through dependencies. Last, we propose RUF impact mitigation
to help recover from compilation failure.
• Ecosystem-scale Analysis. We conduct the first ecosystem-
scale analysis with 140 million transitive dependencies counted
to reveal the RUF impacts. In our analysis, we find that RUF can
impact almost half (44%) of the Rust ecosystem, revealing the
significant impacts and corresponding problems of RUF in the
Rust ecosystem.
• Community Contributions. We design and implement a RUF-
compilation-failure recovery tool that can recover up to 90%
of RUF compilation failures. We open source all RUF analysis
implementations, tools, and data sets to the public to help the
community track and fix RUF problems 1.
The core architecture of the paper is shown in Figure 1. We in-

troduce background knowledge in §2. In §3, we propose techniques
to extract RUF status and usage. We then propose techniques to

1https://doi.org/10.5281/zenodo.8289375
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#![feature(box_syntax)]
fn main() {

let x = box 1;
}

(a) RUF Usage.

#![cfg_attr(compiler_flag, feature(ruf))]
#![cfg_attr(target_os = "linux",

feature(llvm_asm))]

(b) RUF Configuration.

Figure 2: RUF example.

resolve dependencies and quantify the RUF impacts in §4. In §5,
we further conduct an ecosystem-scale study on RUF and answer
three research questions. We continue by discussing our RUF im-
pact mitigation techniques and suggestions in §6. Related work is
presented in §8. Lastly, we conclude the whole paper in §9.

2 BACKGROUND
In this section, we first give preliminaries on unstable features of
the Rust compiler and then discuss the cargo package manager and
dependency management.

2.1 Unstable Feature of Rust compiler
Rust compiler has three release channels: nightly, beta, and sta-
ble [54]. Developers can use any channel releases to build their
projects. Especially, the nightly channel provides unstable fea-
tures to extend the functionalities of the compiler. We define these
features as Rust Unstable Features (short for RUF) [57]. By
adding code #![feature(feature_name)], developers can enable the
RUF feature_name. Rust defines #![feature(feature_name)] asRUF
configuration [55]. Figure 2a gives an example of RUF usage. With-
out the RUF configuration of #![feature(box_syntax)] , let x =

box 1 will cause a compilation failure as box cannot be resolved.
Moreover, developers can also specify configuration predicates
(like compiler_flag or target_os = "linux") in the RUF configu-
ration to allow conditional compilation [55], such as specifying
operating systems, as shown in Figure 2b. RUF will be enabled if
the configuration predicate is true.
RUF Status. RUF have two major types, language features and
library features. The language feature is implemented in the Rust
compiler to provide compiler support, such as syntax extension,
user-defined compiler plugin, etc. Library feature is implemented
in the Rust standard library to provide extra functionalities that are
under development. Language feature has four types of statuses:
• Accepted. The RUF is stable and integrated into the stable com-
piler.
• Active. The RUF is under development and can only be used in a
nightly compiler.
• Incomplete. The RUF is incomplete and not recommended to use.
• Removed. Not supported by the compiler anymore.

Library feature only has two statuses: stable and unstable, corre-
sponding to accepted and active, respectively.
RUF Impacts via Dependencies. RUF not only impacts Rust pack-
ages directly but also affects other packages through dependencies.
Packages in the Rust ecosystem often reuse other packages, thus
propagating RUF impacts. For example, redox_syscall-0.1.57 uses
removed RUF llvm_asm to implement syscall wrappers [21], leading
to compilation failures. Even worse, any packages depending on
redox_syscall-0.1.57 will get the same compilation failure. This

[dependencies]
rand = { version = "0.1.2",

optional = true }
[features]
pf = ["dep:rand"]

(a) Dependency requirements

#![cfg_attr(feature = "pf",
feature(box_syntax))]

#[cfg(feature = "pf")]
pub fn get_box() -> usize {

return box rand()
}

(b) PF usage

Figure 3: PF example.

reveals that RUF threats can be amplified through package depen-
dencies in the ecosystem.
RUF Threats. RUF introduces at least three potential threats to
the Rust ecosystem. 1) Compilation failure. Once the RUF is
removed, all packages enabling it can no longer compile. As RUF
provides functionality extensions at the compiler level, removing or
replacing RUF to avoid compilation failure is not easy. 2) Unstable
functionality. RUF are unstable and are still under development.
Therefore, the functionalities, syntax, and implementation of RUF
can be changed, which may cause unstable behaviors, compilation
failures, or even runtime errors [13]. Even worse, RUF can impact
the Rust compiler architecture if implemented poorly, even though
it’s not enabled [23]. 3) Unstable compiler selection imposed
by RUF. RUF force developers to use nightly compilers. As a result,
all projects that depend on RUF must be compiled using nightly
compilers, though developers are recommended to use stable ones.

2.2 Cargo Package Manager and Dependency
Management

Cargo is the official package manager of Rust, which manages Rust
package dependencies and collaborates with the Rust compiler
to build Rust projects. It can also be used by developers to up-
load or download packages to/from the official package registry
crates.io [50], which hosts packages for the Rust ecosystem. Cargo
uses semantic versioning specifications to manage versions of Rust
packages. The basic version format is <MAJOR.MINOR.PATCH>. MAJOR
is increased when there are incompatible API changes. When there
are backward-compatible changes of functionalities added, MINOR is
increased. PATCH is increased only when bug fixes are introduced.
Dependency Types. Cargo has five types of dependencies [53]: 1)
Normal dependency. It is used in runtime, which is the most com-
mon dependency type. 2) Build dependency. It is used in building
scripts to create environments like data, code, etc. 3) Development
dependency. It is used only in tests, examples, and benchmarks. 4)
Target (Platform-specific) dependency. Dependency marked tar-
get is enabled only in a specific platform like Windows or other
platforms, according to its definition. 5) Optional dependency. De-
pendency marked optional is not enabled by default. This type is
enabled only when related package feature is enabled.
Package Feature (PF). Rust packages can also define features to
allow conditional compilation, which is related to optional depen-
dencies [52]. To distinguish from RUF, we define these features as
Package Feature (PF). Codes marked with PF are compiled only
when the PF is enabled. Unlike RUF, PF is implemented by develop-
ers rather than the Rust compiler. PF is usually tied with specific
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functionality of packages to satisfy different requirements of devel-
opers using the package. Cargo allows developers to bind PF with
optional dependencies. When PF is used, related optional depen-
dencies are enabled to support the implementation of PF codes.

Take Figure 3 for example, in which we define pf that depends
on rand (last line of Figure 3a), as the implementation of pf needs
function rand() from package rand. In Figure 3b, when pf is enabled,
get_box() is compiled, and optional dependency rand is introduced
into the package. As the implementation of get_box() also needs
the RUF box_syntax, we use configuration predicates to declare
that the RUF box_syntax is enabled when pf is enabled. It is worth
mentioning that this example also shows that if other packages use
this with pf disabled, the RUF is disabled, too.

3 RUF STATUS AND USAGE EXTRACTION
To conduct RUF usage and impacts study for the Rust ecosystem,
we first need to extract RUF definitions, status, and usages. The RUF
extraction process consists of two steps, as shown in Figure 1. First,
we extract and track all RUF that the Rust compiler supports to
reveal RUF status changes over time. Second, we develop two new
techniques to extract and understand RUF usages in Rust packages.

3.1 RUF Status Extraction
As discussed in §2.1, RUF status changes between different compiler
versions. An active RUF in a specific compiler version may get sta-
bilized or removed in the following compiler versions, depending
on its development process. To investigate RUF evolution over time,
we need to resolve several technical challenges to track the status
of RUF among all compiler versions over time. First, there is no
official documentation on RUF. All RUFs are defined in the Rust
compiler source code. Second, the syntax of RUF is not unified.
Library features and language features of RUF have different defi-
nition syntaxes. What’s worse, the definitions of RUF are scattered
in different locations, which makes it hard to track them. Third,
the Rust compiler frequently changes its architecture, causing RUF
definition syntax to change between compiler releases. The Rust
compiler provides tidy [56], which can be used to track RUF status.
However, it only covers partial RUF definition and does not support
old Rust compiler versions.

To conquer the above challenges, we design and implement
our RUF status tracker to detect all RUF. To extract the language
feature, we observe that its definition syntax can be described
as (RUFStatus, RUFName, OtherAttributes). However, the order
of each attribute in the definition and supported attributes may
change in different versions of the compiler. Therefore, we use two
regular expressions to match all types of syntax change during com-
piler release update, including ("([a-zA-Z0-9]+?)", .+,(Active|

Accepted|Removed)) and ((active|accepted|removed),([a-zA-Z0-9

]+?),.+). To extract library features, we use tidy to recognize each
attribute in the definition and then merge them to form complete
RUF status information. We extend tidy to detect complete library
feature definitions in all release versions of the compiler. To ensure
both accuracy and coverage, we include all Rust source code files
in the Rust compiler but exclude test-related files.

Besides RUF definition parsing, we further detect abnormal RUF
status transitions to explore the gap between ideal and real-world

// Dependency Requirement of Package A
B = {version = “0.1.2”, features = [“pf"]}

// RUF Configuration of Package B
#![cfg_attr(feature = “pf", feature(ruf))]

rustc build –-cfg 'feature=“pf“’ mainB.rs

Figure 4: RUF impact example.

RUF development. We detect three types of abnormal transitions:
1) Accepted RUF change to any other status. This is abnormal as
stabilized RUF should not return to unstable status. 2) Removed RUF
change to any other status. 3) RUF supported by the old Rust com-
piler are not recognized by newer compiler versions. By detecting
abnormal RUF status transitions among compiler release updates,
we conduct an in-depth study of RUF lifetime, discussed in §5.1.

3.2 RUF Usage Extraction
3.2.1 RUF Configuration Extraction. Aside from extracting all RUF
that the compiler supports, we further investigate RUF usage in the
ecosystem. To achieve this, we have to extractRUF configurations
(details in §2.1) used by Rust developers in the package. We need
to extract the RUF configuration and its enable condition in each
Rust package in the ecosystem, which requires both accuracy and
efficiency. However, RUF configurations can be defined in complex
syntax, so regular expressions cannot guarantee both accuracy and
coverage. Although the compiler can accurately recognize RUF con-
figurations defined in packages, the full compilation of all packages
takes unbearable time. What’s worse, the compilation process only
resolves configuration predicates with user-given options and local
runtime environments. This makes it almost impossible to cover all
possible compilation conditions and will lose the coverage of RUF
usage.

To resolve these challenges, we propose a compilation data-flow
interception-based RUF configuration extractor. For compatibility,
we integrate our extractor into Rust compiler compilation options.
When developers specify the option, the compiler will start extract-
ing RUF configurations. To ensure efficiency, instead of compiling
the whole package, we exclude package configurations and source
codes.Moreover, we only analyze configuration predicates in library
files, where RUF are used, according to Rust’s official documents.
After collecting the necessary compilation data, we intercept the
data flow and redirect it to our extractor. Reusing the query system
of the Rust compiler, we acquire all configurations and filter out
RUF-related ones. We avoid additional configuration processing to
get original data, and then parse configuration predicates. When the
process is done, we terminate the compilation process immediately
and will not generate any compilation file to reduce I/O operations.
The implementation result shows that we can successfully extract
RUF usage from over 99.6% of the Rust package versions in the
ecosystem. The rest are caused by Rust syntax incompatibility with
old packages.

3.2.2 Semantic Identification of RUF Configuration. Although we
have collected all RUF configurations in the Rust ecosystem, the
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RUF configuration predicates are formatted as strings in the com-
piler without semantics. To decide whether the RUF is enabled, we
must identify the semantic relations between configuration predi-
cates and dependency requirements. Using code in Figure 4 as an
example, package B defines RUF configuration with the predicate
pf, which means that ruf is enabled only when pf of package B is
enabled. In the compilation process of package A, the Rust compiler
receives compiler flag –cfg ‘feature="pf"’ and determines the RUF
configuration predicate is satisfied. In this case, ruf is enabled.

Whether the RUF is enabled can only be determined in the com-
pilation process. As a result, an intuitive solution is to compile
package A to get its information. However, the compilation of all
Rust packages takes unbearable time. What’s worse, developers
can use keywords All/Any/Not to define nested predicates like
ALL(ANY(linux, target_env = "sgx"), feature = "pf"). In this
case, we need to explicitly specify compiler flags (linux and sgx) in
the compilation process. Otherwise, our analysis will assume that
the RUF is disabled, leading to an inaccurate RUF impact analysis.

To accurately determine RUF impacts, we propose the semantic
identification of RUF configuration. The basic idea is to split RUF con-
figuration predicates into minimal compiler flags, and identify the
semantic relationship between the flags and dependency require-
ments. In this way, we can accurately determine RUF impacts in
generated EDG (discussed in §4) without compilation. We use an ex-
ample of RUF configuration predicates ALL(ANY(A,B),C) to explain
our design. First, we recursively resolve nested configuration predi-
cates. After that, ALL(ANY(A,B),C) is resolved to be [AC, BC]. The
RUF configuration is then formatted into 𝑣

𝐴𝐶−−→ 𝑅𝑈𝐹 and 𝑣
𝐵𝐶−−→ 𝑅𝑈𝐹 .

The 𝑣
𝐴𝐶−−→ 𝑅𝑈𝐹 means the RUF is enabled in version 𝑣 when predi-

cates𝐴𝐶 (𝐴∧𝐶) is satisfied. After that, we define corpus function
𝛿 (𝑑𝑒𝑝, 𝑐 𝑓 𝑔), which satisfies 𝛿 (𝑑𝑒𝑝,𝐴𝐶) = 𝛿 (𝑑𝑒𝑝,𝐴) ∧ 𝛿 (𝑑𝑒𝑝,𝐶).
𝛿 (𝑑𝑒𝑝, 𝑐 𝑓 𝑔) is true when dependency 𝑑𝑒𝑝 satisfies the RUF con-
figuration predicates of 𝑐 𝑓 𝑔. Using the corpus function, we can
determine whether the dependency 𝑑𝑒𝑝 will enable RUF.

We build corpus function according to Cargo dependency defi-
nition syntax and its relation with the compiler flags transferred
to the Rust compiler based on official documentation [51–53, 55].
There are 15% of predicates that are not officially documented. 7%
are obvious community conventions (e.g., "docs"). To ensure cor-
rectness, we only include obvious conventions. We also randomly
select packages with these predicates and compile them to make
sure that the conventions are all followed. Other 8% of predicates
are hard to find such obvious conventions, and we assume they
will not impact other packages by default. In this way, we may
underestimate the RUF impact.

4 QUANTITATIVE ANALYSIS OF RUF IMPACTS
To quantify RUF impacts over the whole Rust ecosystem, we first
define Ecosystem Dependency Graph (EDG) and factors that affect
impact propagation (§4.1). We further propose a new technique to
accurately and efficiently resolve dependencies in the entire ecosys-
tem (§4.2). After EDG is generated, we can determine RUF impacts
in the ecosystem. The evaluation results show that the proposed
dependency resolution technique can achieve 99% accuracy(§4.3).
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4.1 EDG and RUF Impact Definition
Packages can specify dependency requirements to declare what
packages they need. After the dependency resolution process of a
package, the dependent package versions and attributes are deter-
mined. We define these resolved dependencies as the dependency
tree (DT) of the package. We define EDG as 𝐺 = (𝑁, 𝐸), where
each node 𝑣 in 𝑁 represents each Rust package version, and each
edge 𝑑𝑒𝑝 in 𝐸 represents transitive dependency between nodes,
including both direct and indirect dependencies. Direct dependency

is defined as format 𝑣𝑎
𝑑𝑖𝑟−−−→ 𝑣𝑏 , where 𝑣𝑎 directly depends on 𝑣𝑏 .

We also define indirect dependency format 𝑣𝑎
𝑖𝑛𝑑𝑖𝑟−−−−→ 𝑣𝑏 , where

𝑣𝑎 indirectly depends on 𝑣𝑏 . We define dep relation 𝑣𝑎
𝑑𝑒𝑝
−−−→ 𝑣𝑏 if

version 𝑣𝑏 is in 𝐷𝑇𝑎 , where 𝑣𝑎 transitively depends on 𝑣𝑏 .
A simple but inaccurate method to generate EDG is to resolve

all direct dependencies and connect them. In this case, when pack-
age 𝑝𝑎 depends on 𝑝𝑏 and 𝑝𝑏 depends on 𝑝𝑐 , then 𝑝𝑎 depends on
𝑝𝑐 . However, this is not accurate for Rust. For example, if a spe-
cific package version 𝑣𝑎 directly depends on another version 𝑣𝑏
in the DT of 𝑣𝑎 (𝐷𝑇𝑎) and 𝑣𝑏 directly depends on 𝑣𝑐 in 𝐷𝑇𝑏 , we
can’t guarantee 𝑣𝑎 transitively depends on 𝑣𝑐 in 𝐷𝑇𝑎 . This is be-
cause dependencies can influence each other, as shown in Figure 5.
Compatible dependencies may be merged, which makes the same
dependency requirements choose different dependent versions. In
Figure 5, although A does not change its dependency requirements
of C, after the dependency resolution of B, the final choice of C
changes as influenced by dependency from B to C. As a result, it
is compulsory to resolve all dependencies before we get DT. Ev-
ery dependency change needs a complete resolution process to
generate a new DT. Aside from versions, package features (PF),
dependency type, and other dependency attributes influence the
resolution process. In this way, we need to store extra attributes in
the EDG 𝑑𝑒𝑝 to determine dependencies accurately, as shown in
Figure 6.
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To further determine RUF impacts through EDG, we first define
RUF data structures. In §3.2.1, we get RUF configurations in each
Rust package. We define RUF usage set𝑇 that contains all of these
configurations (𝑐 𝑓 𝑔 for short). Each element inside𝑇 is formatted as

𝑣
𝑐 𝑓 𝑔
−−−→ 𝑅𝑈 𝐹 , which means package version 𝑣 enables 𝑅𝑈 𝐹 when the

configuration predicates of 𝑐 𝑓 𝑔 are true. And the corpus function
𝛿 (𝑑𝑒𝑝, 𝑐 𝑓 𝑔) defined in §3.2.2 determines whether dependency 𝑑𝑒𝑝
satisfies the RUF configuration predicates of 𝑐 𝑓 𝑔.

The RUF impacts can be divided into direct and transitive ones:
1) Direct Impact (Equation 1): Packages that directly use RUF are
impacted by RUF. 2) Transitive Impact (Equation 2): Packages that
transitively use RUF by DTs are impacted by RUF. To get the indirect
RUF impact of given 𝑅𝑈 𝐹 , we first find every 𝑣𝑏 using it. Then,
we select all package versions 𝑣𝑎 that depend on 𝑣𝑏 directly or
transitively. Last, we judge whether its dependency satisfies the
RUF configuration predicates using our corpus function. The impact
definition of certain RUF or a category of RUF is similar, as we only
consider corresponding RUF in 𝑇 rather than all of them.

𝐷𝑖𝑟𝐼𝑚𝑝𝑎𝑐𝑡 (𝑅𝑈 𝐹 ) = {𝑣 ∈ 𝑁 | (𝑣
𝑐 𝑓 𝑔
−−−→ 𝑅𝑈 𝐹 ) ∈ 𝑇 } (1)

𝑇𝑟𝑎𝑛𝐼𝑚𝑝𝑎𝑐𝑡 (𝑅𝑈 𝐹 ) = {𝑣𝑎 ∈ 𝑁 |∃𝑣𝑏 ((𝑣𝑎
𝑑𝑒𝑝
−−−→ 𝑣𝑏 ) ∈ 𝐸 ∧

((𝑣𝑏
𝑐 𝑓 𝑔
−−−→ 𝑅𝑈 𝐹 ) ∈ 𝑇 ∧ 𝛿 (𝑑𝑒𝑝, 𝑐 𝑓 𝑔))}

(2)

4.2 Ecosystem Dependency Resolution
To quantify RUF impacts, we need to generate EDG by resolving de-
pendencies of all Rust packages. Although Cargo provides an official
dependency resolution tool, it lacks flexibility and takes unbearable
time to resolve the entire ecosystem. To achieve both accuracy
and efficiency, we face several specific challenges. Sampling for
ecosystem analysis[12, 49] lacks coverage. Assuming that all depen-
dencies are transitive and ignore package-manager-specific rules
[17, 66] gains coverage but loses accuracy. Existing work simulating
the resolution rules increases accuracy, but they fail to cover all
dependency types and only use an approximate resolution strategy,
making the resolution less accurate [39]. Moreover, as RUF impacts
other packages conditionally, our resolver should be able to resolve
and store RUF-related configurations (e.g., PFs) aside from depen-
dency. Otherwise, RUF impacts cannot be precisely determined.

To conquer these challenges, we design our own EDG generator
to resolve dependencies. To achieve accuracy, we use the Cargo core
resolver to resolve dependencies. However, the core resolver needs
Cargo and package environment to analyze the dependency re-
quirements defined in the Rust packages. The default environment
provided by Cargo is not extensible as the process is blocked by
I/O operations and only allows single thread execution. To conquer
this problem, we build a virtual environment for the core resolver
and virtualize package configuration before dependency resolution.
The virtual package environment only contains the minimal config-
uration of the target package to be resolved. The resolution process
uses its own Cargo environment rather than the one shared in the
host machine. Thus we can extend the resolution process in any
threads and avoid locks.

Algorithm 1 Rust Ecosystem Dependency Graph Generation
Input: 𝑁 - Unresolved Package Versions
Output: 𝐺 is Ecosystem Dependency Graph (EDG)
1: 𝐸 ← ∅
2: 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑟 ← 𝑛𝑒𝑤 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑎𝑟𝑔𝑜𝐸𝑛𝑣 ()
3: for each 𝑣 ∈ 𝑁 do
4: 𝑝 𝑓𝑣 ← 𝑣 .𝑎𝑙𝑙_𝑝 𝑓 ()
5: 𝑐 𝑓 𝑔← 𝑛𝑒𝑤 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑃𝑎𝑐𝑘𝐶𝑜𝑛𝑓 𝑖𝑔(𝑣, 𝑝 𝑓𝑣)
6: 𝑐 𝑓 𝑔← 𝑐 𝑓 𝑔.𝑑𝑒𝑝 (𝑛𝑜𝑟𝑚𝑎𝑙 ∪ 𝑏𝑢𝑖𝑙𝑑 ∪ 𝑜𝑝𝑡 ∪ 𝑡𝑎𝑟𝑔𝑒𝑡)
7: 𝑟𝑒𝑠 ← 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑟 .𝑟𝑒𝑠𝑜𝑙𝑣𝑒 (𝑐 𝑓 𝑔)
8: for each 𝑣𝑖 ∈ 𝑟𝑒𝑠.𝑣𝑒𝑟 do

9: for each (𝑣𝑖
𝑑𝑖𝑟−−−→ 𝑣 𝑗 ) ∈ 𝑟𝑒𝑠.𝑑𝑖𝑟 (𝑣𝑖 ) do

10: 𝑎𝑡𝑡𝑟 ← 𝑓 𝑜𝑟𝑚𝑎𝑡 (𝑣, 𝑑𝑖𝑟, 𝑣𝑖 , 𝑣 𝑗 )
11: 𝑑𝑒𝑝 𝑗 ← 𝑛𝑒𝑤 𝐷𝑒𝑝 (𝑣 𝑎𝑡𝑡𝑟−−−→ 𝑣 𝑗 )
12: 𝐸 ← 𝐸 ∪ 𝑑𝑒𝑝 𝑗
13: end for
14: end for
15: end for
16: 𝐺 ← (𝑁, 𝐸)
17: return 𝐺

EDG generation process can be described by Algorithm 1. We
first create Virtual Environment Configuration (line 2 and 5). After
that, we adjust our package configuration with all package features
(PF) and all dependency types except development dependency
enabled. This is because development dependency is only used
for tests, examples, and benchmarks, thus not impacting package
runtime, mentioned in §2.2. After that, we resolve the DT of 𝑣 to
get results 𝑟𝑒𝑠 . It is then formatted into EDG edges (lines 7-14). The
key EDG format process 𝑓 𝑜𝑟𝑚𝑎𝑡 (𝑣, 𝑑𝑖𝑟, 𝑣𝑖 , 𝑣 𝑗 ) (line 10) is designed
for both efficiency and flexibility. We can only keep necessary
dependency information like PFs. This accelerates the resolution
process and reduces the EDG size. Moreover, the format process is
user-defined and gives more possibility to include other dependency
attributes for further investigation other than RUF impact.

In our implementation, we build a channel-based resolution
pipeline. The sender packs unresolved package version informa-
tion and sends it to the receiver. The receiver is responsible for the
resolution process described in Algorithm 1. The virtual environ-
ment configuration is achieved by setting environment variables of
Cargo, which creates a virtual workspace for it. We virtualize the
package environment by constructing a fake configuration file con-
taining target dependency, type, PF, and other attributes according
to version metadata. In the format process, we only store transitive
dependencies linked to the root version without any attributes for
efficiency. After constructing EDG, we resolve dependencies with
attributes a second time using the same pipeline. This time, we only
resolve necessary versions and dependencies according to RUF con-
figurations to get RUF impacts. The EDG generation process takes
only about 2 days to resolve all 140M transitive dependencies in
an AlderLake machine, and EDG occupies only 2 GB of storage.
Based on EDG, our ecosystem-level analysis only takes seconds or
minutes to complete, with all transitive dependencies counted.
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Table 1: Resolution accuracy.

Dataset Type Tree Accuracy Precision Recall F1Score
Random 99.39% 99.76% 98.88% 99.32%
Popular 99.50% 99.99% 99.16% 99.58%
Mostdep 97.04% 99.96% 97.47% 98.70%

4.3 Accuracy Evaluation
As different package manager uses different dependency resolu-
tion strategy, there is no standard resolution accuracy benchmark.
For evaluation, we select Cargo Tree tool from the official package
manager Cargo-1.63.0 for comparison. We resolve four types of de-
pendency: build, common, optional, and target. Only development
dependencies are omitted as they will not affect the runtime of pro-
grams, which is the same as our resolution rules. We first download
source code from the official database Crates.io, and then use Cargo
Tree to resolve dependencies in the real environment. After that, we
will compare dependency items from Cargo Tree and our ecosystem
dependency graph. To evaluate accuracy in the different data sets,
we select 2000 packages from the whole ecosystem as our standard
dependency benchmark data set and choose three strategies to
select these packages: 1) Random: Randomly selected versions. 2)
Popular: Latest versions of packages that have the most downloads.
3) Mostdep: Latest versions of packages that have the most direct
dependencies, which is the most complex situation a resolver will
meet. We select the latest versions of the given package because
it is chosen to be the dependency package version by default and
typically has the most complex dependencies.

We define four types of comparison results given package i in
the accuracy evaluation: 1) 𝑅𝑖𝑔ℎ𝑡 (𝑅𝑖 ): Dependencies that occur
in both dependency data sets with the same versions. 2)𝑊𝑟𝑜𝑛𝑔

(𝑊𝑖 ): Dependencies that occur in both dependency data sets with
different versions. 3) 𝑂𝑣𝑒𝑟 (𝑂𝑖 ): Dependencies that only occur in
our resolution data set. 4) 𝑀𝑖𝑠𝑠 (𝑀𝑖 ): Dependencies that only oc-
cur in standard data sets. We treat each dependent version as a
dependency and the sum of dependent versions as a dependency
tree in the evaluation process. This is because we only care about
whether a specific package version impacts the root package in the
dependency tree rather than how it impacts the dependency tree.

We use four indexes to represent accuracy shown in Equations (3)
to (6).𝑇𝑟𝑒𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 stands for the resolution accuracy of the entire
dependency tree. 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 represent 𝑅𝑖𝑔ℎ𝑡 percentage
in standard dependency and resolved dependencies data set, respec-
tively. 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 [64] is the harmonic mean of recall and precision,
which can represent the accuracy of resolution.

𝑇𝑟𝑒𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑𝑛
𝑖=1 [𝑊𝑖 +𝑂𝑖 +𝑀𝑖 = 0]

𝑛
(3)

𝑅𝑒𝑐𝑎𝑙𝑙 =

∑𝑛
𝑖=1 𝑅𝑖∑𝑛

𝑖=1 (𝑅𝑖 +𝑀𝑖 )
(4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑𝑛
𝑖=1 𝑅𝑖∑𝑛

𝑖=1 (𝑅𝑖 +𝑊𝑖 +𝑂𝑖 )
(5)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (6)

Results in Table 1 show that our dependency resolution tool
can achieve 97.04-99.50% accuracy in dependency tree resolution.
The EDG structure has 99.76-99.99% precision, which means the
dependencies in EDG are mostly accurate. Moreover, EDG has
97.47-99.16% recall, which shows it only loses a tiny number of de-
pendencies from the Rust ecosystem. In the evaluation process, we
observed that the dependency configuration behaves slightly differ-
ently when it is uploaded to the ecosystem rather than built locally.
The configuration file in the source code may force developers to
use a specific version of the package manager, resolver, or compiler
during the local development of the built package. Furthermore, it
will probably use local packages instead of packages from Crates.io.
These operations are forbidden when they are uploaded to Crates.io
and used by other packages. This configuration setting is mainly
used for local environments but not for other developers who want
to use the functionalities of this package. As a result, our evaluation
process removes local configurations to keep consistent with the
Rust ecosystem behavior.

5 ECOSYSTEM-SCALE STUDY
Our source data comes from the official package database crates.io
on August 11, 2022, which contains 592,183 package versions. In
total, we resolve 139,525,225 transitive dependencies and extract
182,026 RUF configurations. To drive our study on RUF, we raise
three research questions (RQs).
• RQ1: (RUF Lifetime) How does Rust Unstable Feature status
evolve with time?
• RQ2: (RUF Usage) How do packages in the Rust ecosystem use
Rust Unstable Feature?
• RQ3: (RUF Impacts) How does Rust Unstable Feature impact
packages in the Rust ecosystem?

5.1 RQ1: RUF Lifetime
By tracking RUF status in every minor version of the Rust compiler
from v1.0.0 (2015-05-15) to v1.63.0 (2022-08-11), we obtain 1,875
RUF supported by Rust compiler, including both language features
and library features. In the latest version of the compiler, RUF status
is shown as follows: Accepted(1,002), Active(562), Incomplete(11),
Removed(59), Unknown(241). Typically, new RUF will first appear as
active or incomplete status and will be stabilized to accepted status
after RUF development. During the RUF status evolution, the RUF
may be judged useless and get removed. Half of RUF (47%, 873/1,875)
are not stabilized in the latest version of the Rust compiler, and
16% of RUF (300/1,875) development eventually stops and becomes
removed or unknown.

As discussed in §3.1, we further detect abnormal RUF status
transitions to reveal unexpected RUF development behavior. We
observe 277/1,875 (15%) abnormal RUF status transitions. Among
these abnormal RUF, 244 RUF supported by the old compiler are not
recognized by the new compiler, thus becoming unknown. More-
over, accepted (i.e., stable) RUF can become active or even unknown
during development. Some RUF appear and disappear repeatedly
and eventually fail to be stabilized. After inspecting abnormal RUF
status evolution, we find that the implementation of some RUF
(e.g., unnamed_fields [23]) interferes with the architecture of the
Rust compiler and makes it produce unexpected behavior. The RUF
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unnamed_fields breaks the reliability of the compiler. This makes
the compiler unable to recognize correct programming syntax even
though the RUF is not enabled. There are other reasons for RUF
removal other than bugs. The functionality of the RUF may overlap
with other stable methods or existing RUF, so the RUF is considered
useless and gets removed. But the removal causes incompatibility
of RUF usage, thus introducing compilation failure. We suggest
introducing another status that marks the RUF as inactive. If the
RUF is not proven to be vulnerable or unstable, it can still work for
developers, but with a warning instead.

Finding-1: We observe 277/1,875 (15%) abnormal RUF status
transitions, which are mainly caused by abandoned development
or bugs. RUF may get removed and cause package compilation
failures, even though they are not vulnerable to packages. These
types of abnormal RUF lifetime break the usability of Rust pack-
ages.

Although half of RUF are stabilized in the latest version of the
Rust compiler, there is still potential instability in the accepted RUF.
We further focus on accepted RUF that returns to unstable status.
It indicates that there may be instability found in the stable RUF.
While accepted RUF can be integrated into a stable Rust compiler,
this does not mean it is completely safe for packages that use it.
While RUF proc_macro [47] is widely used in the Rust ecosystem, the
stabilization process is tough as it turned to accepted in v1.15.0 of
the Rust compiler and then came back to active. RUF error_type_id

was accepted in v1.34.0 of Rust compiler, but then its implemen-
tation was found not memory safe [13], and it returned to active.
This means that stabilized RUF can also introduce security threats
to packages. Moreover, the stabilization process of RUF needs to
be carefully discussed, especially when deciding whether the RUF
should change its status or not.

Finding-2:We find that half of RUF (47%) are not stabilized in
the latest version of the Rust compiler. Even worse, stabilized
RUF can also introduce vulnerabilities to the package [13], which
indicates that stabilized RUF cannot be regarded as totally safe
for developers.

5.2 RQ2: RUF Usage
From all package versions of the Rust ecosystem, we extract 1,000
RUF and 182,026 RUF configurations used by 72,132 (12%) versions
in total. It is worth mentioning that although the Rust compiler
supports 1,875 RUF, not all of them are used by Rust packages. Our
implementation of Rust Unstable Feature Extraction is based on
Rustc-v1.63.0-Nightly. Though our study only includes packages
that could be pre-compiled in the latest version of the Rust compiler,
we still use all packages in the ecosystem as complete works.

Table 2 shows RUF usage status in the Rust ecosystem. Only
38% types of RUF become stable while only accounting for 21% of
usages. There are still 38% types of RUF that are active and need
further development. What’s worse, 23% types of RUF are unknown
or removed. Packages that enable such RUF can’t be compiled. The
present situation of RUF usage in the Rust ecosystem is even worse.
72,132 (12%) package versions are using RUF, and 65,172/72,132
(90%) package versions among them are still using unstabilized RUF,
which means using RUF that is not accepted. This indicates that

Table 2: Summary of RUF usage.

Type RUF Count Package Versions RUF Usage Items
Accepted 382 (38%) 24,681 (34%) 38,858 (21%)
Active 381 (38%) 55,785 (77%) 101,494 (56%)
Incomplete 7 (7%) 5,829 (8%) 5,926 (3%)
Removed 41 (4%) 14,812 (21%) 21,096 (12%)
Unknown 189 (19%) 10,534 (15%) 14,652 (8%)
Total 1000(100%) 72,132(100%) 182,026(100%)

Table 3: Summary of RUF impacts. The table shows how
package versions are impacted by different types of RUF and
through different dependencies.

RUF Type Direct Usage Uncond Impact Cond Impact Total
Accepted 24,681 17,085 21,477 38,448 (6%)
Active 55,785 77,582 207,133 237,386(40%)
Incomplete 5,829 7,696 7,991 12,097 (2%)
Removed 14,812 50,896 53,159 61,160(10%)
Unknown 10,534 46,157 48,742 57,916(10%)
Total 72,154(12%) 111,140(19%) 220,665(37%) 259,540(44%)

unstabilized RUF usage still dominates among all RUF. In addition,
21,338/72,132 (30%) of these package versions are using removed or
unknown RUF, which makes them directly suffer from compilation
failure.

We also conducted limited research on large projects of RUF
usage, including the Android Open Source Project (AOSP), the
Linux operating system, and the Firefox browser. These projects
are all widely used and have strong requirements for reliability.
We discovered that they all used RUF in their main repository
[25, 38, 40, 43]. Moreover, AOSP and Firefox also cloned the source
code from third-party packages to their main repository [40, 44],
which introduced extra RUF usage. What’s worse, there is still
removed RUF usage integrated into the main repository [6], which
could break the reliability and usability the project. For stabilization,
the RUF usage should be carefully reviewed and discussed to make
sure that it won’t cause reliability issues or vulnerabilities.

Finding-3: Although RUF are declared to be experimental ex-
tensions and unstable for Rust developers, 72,132 (12%) package
versions in the Rust ecosystem are using RUF, and 90% of package
versions among them are still using unstabilized RUF.

5.3 RQ3: RUF Impacts
We resolve dependencies from all package versions in crates.io with
4,508,479 direct dependencies and successfully collect 139,525,225
transitive dependencies from 479,201(81%) versions. Our implemen-
tation of the EDG generator is based on Cargo-1.63 2022-08-11,
Resolver V2. We do not cover all versions because most unresolved
versions have no dependency or have resolution conflicts. The ac-
curacy evaluation in §4.3 shows that the coverage should be over
97-99%. While our study only focuses on packages that can be suc-
cessfully resolved in the newest version of dependency resolver,
we still use all packages in the ecosystem as complete works. This
means that our data will underestimate the dependency impacts
on the ecosystem.
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Table 3 shows RUF impacts in the Rust ecosystem. Direct Usage
represents package versions that directly use RUF, described in
Equation 1. Uncond Impact represents package versions impacted
through dependencies where RUF are enabled by default. Described
in Equation 2,Cond Impact represents all package versions impacted
through dependencies, including Uncond Impact. Total represents
the total package versions impacted directly or through dependen-
cies. The results show that, although RUF are used by only 72,154
(12%) package versions in the Rust ecosystem, it can impact up to
259,540 (44%) package versions through dependencies, which is
almost half of the Rust ecosystem.

As mentioned earlier, RUF are designed to be an unstable exten-
sion for preview functionalities. However, it significantly impacts
the Rust ecosystem against the original intention of RUF design.
Among all types of RUF, unknown and removed RUF can impact
a maximum of 70,913 package versions, accounting for 12% of all
package versions. This makes them suffer from compilation failures.
Active RUF affect 40% of Rust packages in the entire ecosystem,
accounting for 91% of impacted package versions. At the same time,
while there are only 8 types of incomplete RUF, they affect 12,097
package versions. Incomplete RUF are extremely unstable, and their
API can change at any time, which exposes packages to unexpected
runtime behavior and compromises their stability.

Finding-4: Through transitive dependencies, RUF can impact
259,540 (44%) package versions. Removed RUF can cause at most
70,913 (12%) versions to suffer from compilation failure. This
reveals the importance of stabilizing RUF for Rust ecosystem
reliability.

We further analyze why RUF can impact such a large number
of packages in the Rust ecosystem. For packages that use RUF, we
discover some super-spreaders which many packages depend on.
Taking unconditional RUF configurations as an example, we find
that redox_syscall-0.1.57 [21] uses unknown RUF llvm_asm and
removed RUF const_fn and enables them by default. This causes
compilation failures for 41,750 Rust package versions in the ecosys-
tem, accounting for 41,750/46,157 (90%) of all package versions
unconditionally impacted by unknown RUF. This reveals the great
impact of Rust super-spreaders, which is not caused accidentally.
The observed impact is a direct consequence of the centralized
Rust ecosystem. Based on generated dependency graph, we dis-
cover a lot of super-spreaders in the Rust ecosystem. For exam-
ple, libc-0.2.129 and unicode-ident-1.0.3 have most dependents,
353,805 (60%) and 332,951 (56%) package versions respectively. If
these packages are affected by removed RUF, they will cause mas-
sive compilation failures and destabilize the entire ecosystem. To
avoid single-point failure in the ecosystem, super-spreaders are
recommended to backport their fix to old versions. Under the se-
mantic versioning dependency mechanism, the fix can automati-
cally transfer to the whole ecosystem, as the newest version in the
compatibility range is usually the first choice of dependencies.

Finding-5: One of the super-spreaders (redox_syscall-0.1.57)
makes 41,750 Rust package versions in the ecosystem fail to com-
pile, accounting for 90% of unconditionally impacted versions by
unknown RUF. Once RUF introduce reliability or security prob-
lems to super-spreaders, the entire ecosystem could be threatened.

Table 4: An example of RUF recovery that shows a package
impacted by RUF A&B&C. In 1.57.0, all RUF used are at their
best status, so 1.57.0 will be the compatible compiler that can
compile the package.

Compiler Version 1.50.0 1.57.0 1.63.0
RUF A Active Accepted Removed
RUF B Accepted Accepted Accepted
RUF C Active Accepted Unknown

Recovery Status ✓ ✓ ✕

6 RUF IMPACT MITIGATION
As our ecosystem-scale study shows that RUF impact a wide scope
of Rust packages, it is important to mitigate RUF impacts to avoid
potential instability and compilation failure. In this section, we first
discuss our new tool to detect RUF dependency in Rust packages
and recover compilation failure caused by RUF impact. We further
give detailed advice on stabilizing RUF implementation and safe
RUF usage to minimize RUF impacts on the Rust ecosystem based
on our RUF findings.

6.1 RUF Dependency Detection and
Compilation Failure Recovery

Problems. RUF can propagate through transitive dependencies,
and package developers are usually unaware of such propagation.
As a result, when RUF dependency exposes vulnerabilities or re-
liability issues, developers can not easily fix the problems as they
are introduced by dependencies, and dependency source code can
not be directly modified. Compilation failure is an example that
removed RUF can cause through transitive dependencies, where the
compiler only exports an error message, and developers often have
no idea what happens when the RUF is introduced by dependencies.
Therefore, it is important to detect RUF dependency in advance
to reveal RUF impacts and try to recover them from compilation
failure to mitigate RUF impacts as much as possible.

Design. To further mitigate RUF impacts on the Rust ecosystem,
we design a new tool to detect RUF dependency in packages and try
to recover them from RUF threats, including compilation failure,
unstable usage, etc. The main mitigation strategy is to find a com-
patible version of the Rust compiler, where all types of RUF used
by the package can keep their best status. This can be achieved
only when we maintain RUF status in every version of the compiler
(RUF lifetime). Without RUF lifetime, developers don’t know how
to choose compiler versions to keep RUF in its best status. Our
design uses the EDG generator to determine RUF dependencies and
use RUF status extraction data to locate the compatible compiler
for packages using RUF. Taking Table 4 for example, the example
package is impacted by RUF A&B&C. After traversing all compiler
versions, in compiler version 1.57.0, all RUF used are at their best
status, so this compiler version is selected for the package.
Implementation. We develop RUF dependency detector of Rust
projects, which gives analyzed packages their RUF dependency
information, advice, and compatible Rust compiler version. It is rep-
resented as a sub-command of Rust official package manager Cargo
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Table 5: RUF impact mitigation results. Applying our miti-
gation strategy, 90% of package versions can recover from
compilation failure.

RUF Impacts Total Compilation Failure
Before Mitigation 259,540 70,913
After Mitigation 259,540 6,978

for compatibility and can analyze the Rust projects with given argu-
ments and options passed to Cargo. This ensures that our tool can
extract the exact environment of the compilation process, includ-
ing running operating system, architecture, enabled PF, and other
compiler flags. Under the environment, our tool will then use the
technique proposed in Figure 1 to accurately find all enabled RUF
to 1) warn developers if enabled RUF might get removed in newer
Rust compilers, 2) switch the package to a compatible compiler if
it suffers from compilation failure introduced by enabled RUF, 3)
detect RUF with an abnormal lifetime which is more vulnerable
and unstable for the projects, and 4) audit final dependencies to
avoid RUF impacts. Due to the time limit, our implementation only
includes functionality 2), but others can be easily extended as our
code base and database include necessary functionality and data.
Mitigation Results.We develop the RUF mitigation analyzer of
the Rust ecosystem, which scans the Rust ecosystem to reveal the
mitigation success rate of our tool. The results are shown in Table 5.
Originally, there are 259,540 package versions impacted by RUF,
and at most 70,913 package versions suffer from compilation failure
in the newest Rust compiler in theory. Applying our compilation
failure mitigation design, over 90% (63,935/70,913) of package ver-
sions can recover from compilation failure. Specifically, we look into
the super-spreader redox_syscall-0.1.57 to access our mitigation
results. We find that 97% (40516/41750) of its dependents success-
fully apply our mitigation technique and recover from compilation
failure, which accounts for 63% (40516/63935) of our successfully
recovered package versions. This reveals the significant desire for
careful super-spreaders package maintenance to avoid single-point
failure. The mitigation result points out the effectiveness of our mit-
igation technique and proves that it can contribute to the reliability
and usability of the Rust ecosystem. However, we must add that this
is not done once and for all. The RUF may contain other potential
bugs and are not supported in other Rust compiler versions. As a
result, the ultimate solution to avoid RUF impacts is to stabilize
RUF and the development standard of RUF. Our tool cannot change
the stabilization process and can only select compatible compilers
to help developers mitigate RUF impacts as much as possible.

Mitigation Results: Our proposed RUF impact mitigation tech-
nique can recover up to 90% of package versions in the Rust
ecosystem that suffer from compilation failure introduced by RUF
impact.

6.2 Suggestions on RUF Impacts Mitigation
Stabilizing RUF Implementation. For the Rust compiler, we
suggest that the development process of the compiler should be
systematically reconsidered. The introduction of RUF can cause
stability problems as it is now widely used and impacts a large part
of the whole ecosystem, which makes the ecosystem less stable.

What’s worse, the RUF compatibility problems can make the whole
package unusable for developers outside of the ecosystem, which is
not friendly for maintainers and open source software community.
First, for compatibility concerns, we suggest that useless RUF should
not be removed. If the RUF is not proven to be vulnerable or unstable,
it can still work for developers, but with a warning instead. Second,
super-spreaders that a large number of packages depend on should
avoid using RUF, especially when it is enabled by default. This can
greatly eliminate RUF impacts in the Rust ecosystem. Third, The
Rust compiler should provide more information about RUF enabled
to developers to build more reliable software.
Safely Using RUF. Although the Rust ecosystem declares itself to
be stable for developers, lots of packages will then face compilation
failure caused by removed RUF. To stabilize the Rust ecosystem, we
recommend that developers (especially those who manage popular
packages) backport their fixes to old versions. Following semantic
versioning, dependent packages can automatically use fixed ver-
sions to avoid such failure. Moreover, to avoid RUF usage as much
as possible, developers should use RUF only when inevitable. The
RUF usage should be limited to a set of data structures and functions
to be efficiently replaced in the future. What’s more, developers
should enable RUF only when it is needed. Developers can use RUF
configuration predicates to declare environment and functionality
requirements to enable RUF. Last, we suggest that developers audit
their RUF usage and dependencies to avoid using RUF as much as
possible. Developers can use audit tools (e.g., our tool in §6.1) to
help review their own projects.

7 THREAT TO VALIDITY
First, in the evaluation process of our EDG, we mentioned we
remove local configurations to keep consistent with the ecosystem
behavior. However, we find that no more than 1% of packages can’t
be easily processed in this way. And the configurations can’t be
successfully resolved by Cargo Tree, so we removed these packages
in the ground truth, which makes the data set slightly smaller than
it should be. Second, 92% of RUF configuration predicates defined
by Rust packages in the ecosystem can be successfully recognized.
Others are considered as not impacting the ecosystem through
dependencies. This makes RUF impacts underestimated.

8 RELATEDWORK
Dependency Analysis. Package managers (PMs) made different
decisions on dependency definition and resolution. Pietro et al. [1]
systematically compared resolvers in various dimensions, including
conflict solutions, range modifiers, etc. Jens et al. [20] summarized
forms of dependency version classifications under different PMs.
Decan et al. [14] and Zhang et al. [14] focus on the usage and com-
patibility issues of semantic versioning. Decan et al. [15, 16, 18] also
defined evolution metrics of comprehensive dimensions and sys-
tematically analyzed and compared ecosystem dependency graph
evolution from different PMs by empirical study. Zimmermann et
al. [66] revealed security risks in the NPM ecosystem by analyz-
ing dependencies, including fragile maintainers and unmaintained
packages which are popular in the NPM. Liu et al. [39] further
used NPM-specific principles to correctly resolve dependencies and
revealed vulnerability impacts.
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Ecosystem Analysis via Dependency. Wittern et al. [65] con-
ducted the first large-scale analysis of the NPM ecosystem. By
analyzing the topology of the popular JavaScript libraries, they
found that NPM packages heavily rely on a core set of libraries.
Li et al. [36] found that almost half the packages adopt yanked re-
leases, and these yanked releases propagated through dependency,
causing unbuildable problems. Jia et al. [29] and Mukherjee et al.
[41] focused on dependency incompatibilities issues within C/C++
and Python, and propose to detect and fix these issues to ensure the
repeatability of the build. Wang et al. [60–63] studied the manifesta-
tion and repair patterns of dependency conflicts of three language
ecosystems (i.e., Java, Python, and Golang), and developed tools for
automatic detection, testing, and monitoring. The above research
work is conducted using data from a small proportion of the whole
ecosystem due to efficiency problem.We believe that our techniques
can be applied to precise and efficient dependency resolution for
further ecosystem-level study. Based on our generated ecosystem
dependency graph, vulnerability propagation, dependency conflict
detection, and other ecosystem-level research can be easily and
comprehensively conducted.
Reliability Research on Compiler and Rust. Although devel-
opers rely on compilers to build reliable programs, compilers can
also introduce extra vulnerabilities [3, 4, 22, 27, 28]. Hohnka et al.
[27] pointed out that popular compilers can induce vulnerabilities
like undefined behavior, side-channel attacks, persistent state vio-
lation, etc. There is also reliability research on Rust to scan Rust
bugs better and prevent developing unsafe codes. Bae et al. [8]
suggested three types of memory safety bug patterns in Rust and
developed a tool to automatically detect bugs in the Rust ecosys-
tem. Astrauskas et al. [7] empirically studied unsafe code usage in
practice, concluding six purposes for using unsafe code and three
Rust hypotheses that help make unsafe code safer. Li et al. [37]
presented a static analysis tool to detect runtime assertions failure
and common memory-safety bugs, by analyzing Rust’s Mid-level
Intermediate Representation (MIR). Jiang et al. [30] proposed an
approach based on an API dependency graph to automatically gen-
erate fuzz targets for fuzzing Rust library and implement a tool
that can efficiently generate fuzz targets on a given library API and
integrated with AFL++ for fuzzing. These analysis techniques can
also be applied to the Rust compiler to help stabilize the compiler
codes and RUF implementations. Our results show that, while Rust
developers seek RUF for compiler functionality extensions, the reli-
ability problems such as compilation failure and vulnerabilities can
also be invisibly introduced to the Rust ecosystem on large scale.
We hope that researchers and the Rust community can investigate
further the compiler problems.

9 CONCLUSION
In this paper, we conduct the first in-depth study to analyze RUF
usage and its impacts on the Rust ecosystem. We propose several
novel techniques in the analysis, including compilation data-flow
interception, semantic identification of RUF configuration, ecosys-
tem dependency graph generator, and RUF impact mitigation. More
specifically, we first extract the RUF definition from the compiler
and usage from packages. Then we resolve all package dependen-
cies for the entire ecosystem to quantify the RUF impacts on the

whole ecosystem.We also remediate RUF impacts by finding out the
best recovery point for impacted packages. Our analysis covers the
whole Rust ecosystem with 590K package versions and 140M tran-
sitive dependencies. Our study shows that 44% of package versions
are affected by RUF, causing at most 12% of package versions to fail
to compile. Moreover, using our RUF remediation technique, up to
90% package versions can be recovered from compilation failure
caused by RUF impacts. Our study discovers many useful findings
and reveals the importance of stabilizing RUF for the security and
reliability of the Rust ecosystem.
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